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An Algorithm for the Solution of Certain 
Differential-Difference Equations of Advanced Type 

By G. Greaves 

Absact. The differential-difference problem 

d-{sJ(s)} + J(s + 1) = 0 (Re(s) > 0); sJ(s) -31 as s-3 0, dy 

which arises in the theory of numbers, is studied and an algorithm developed for the 
simultaneous numerical approximation of the derivatives J(')(s). An error bound is estab- 
lished for the process described and its numerical performance and stability are discussed. 

1. Introduction. The solution, 

(1.1) J(S)=f e-sxexp{ L dt} dx, 

of the differential-difference problem 

(1.2) d {sJ(s)) + J(s + 1) =O, 

( 1.3) sJ(s) 1-> as s ->0 + , 
where J(s) is analytic in the half-plane Re(s) > 0, is of some importance in the 
theory of numbers; see, for example, [2], [5]. In particular the present author 
needed, in connection with the work described in [5], numerical approximations to 
the first few derivatives J ()(1). In this paper we discuss an algorithm (which has 
been implemented by the author on an ICL 2980 computer) which provides 
simultaneous approximations to these numbers. The algorithm is based upon the 
differential-difference equation (1.2) rather than upon the integral representation 
(1.1). We establish error bounds (see (3.3), (4.2) below) for the processes we 
describe. 

The method applies at least to certain other equations 

(1.4) d {sg(s) = ag(s) + bg(s + 1) 

of importance in this subject: see [6], [7]. The present discussion (see (2.1) below) 
deals simultaneously with the cases b = -1, a a negative integer; the author has 
implemented a similar algorithm relating to the case b = + 1. 

The algorithm involves a representation of the solution J(s) which, for some 
purposes (e.g., the application in [5]), is more convenient than the integral represen- 
tation (1.1). We express J(s) in terms of a series of I + 1 functions 4si (0 < i < I), 
of which 41i removes a singularity at the integer - i. There remains the solution fi of 
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a residual differential-difference equation; we approximate to the derivatives i/n)(s) 
for 0 < n < N by a rather straightforward process involving the solution of a 
triangular system of N + 1 linear algebraic equations. It appears that, of these two 
processes, the first, if used in isolation, fails to yield convergent approximations (as 
I __ oo) to J(n)(1) in the case n = 0, while, for any I, the second process is not 
convergent as N - oo. We will show, however, that when used in the appropriate 
combination very satisfactory convergence properties result. 

The applications referred to above of the solutions of "advanced" equations, 
such as (1.2), have a characteristic feature. This is that they are used to obtain 
information about solutions of "retarded" equations such as (6.2) below. In 
contrast to (1.1), these solutions are not analytic at any positive integer. As an 
illustration of this feature we show that the number 

J(1) = 0.62432 99885 43550 87099 . . . 
is identical to a constant computed many years ago by Dickman [4]. 

For a general reference on the subject of differential-difference equations the 
reader may consult [1]. 

2. Removal of Singularities. Observe first (there are details in [5]) that the 
function J, as defined by (1.1), has the property that J(s) - I/s has an analytic 
continuation into Re(s) > -1, the singularity at 0 being removable. 

By n-fold differentiation of (1.2) we reach 

(2.1) SJ(n +)(s) + (n + 1)J(n)(s) + J(n)(s + 1) = 0, 
which we may rewrite as 

ds {sn+lJ(n)(S)} + snJ(n)(s + 1) = 0, 

both for Re(s) > 0. But J (n)(S) (-1)nn! /s n + is analytic in Re(s) > - 1. 
The following definitions and identities hold for integers i > 0, except where 

otherwise stated. Define inductively 

(2.2) 4'o(s) = , 4{X(s) = s iJ 4iI(w + I)dw (Re(s) > -i, i > 1), 

and write 

(2.3) fo(s) = J(S) = 4?o(s) - 41'(s) + * * * + (- 1)i- 14i- i(s) + (- )Of;(S). 
Note that this implies 

(2.4) fi(s) = 4i'(s) -fi+ 1(s) 
For i > 1 the equation (1.2) then induces 

(2.5) d fs {fi(s)} + fi(s + 1) = {i _ i(S + 1), 

where sfi(s) -- 0 as s -- 0. Using (2.2), and (1.2), (1.3) if i = 0, we obtain 

(2.6) sfi(s) + fif(w + 1) dw = s4i(s) 

which continues fi(s) to Re(s) > -i (e.g., via continuations to Re(s) > -k, for each 
k < i, by induction on k). Because of (2.4) this also says 

(2.7) Sfi+1(s) = fi(w + 1) dw. 
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Differentiation of (2.2) gives 

(2.8) 4)n,)(S) = (-n1s)n!/S+, IS(n + 1)(S) + (n + 1)44(n)(S) = 44(n91(S + 1). 

This may be rewritten as 

(2.9) d 
s"n+4i/(n(S) ( + 1) (i > 1). 

3. Computation of i(n)(S). We restrict our account to the case when s is real and 
s > 0, although this restriction (which, together with n > 0, will be implicit 
throughout this section) could probably be relaxed, if it were necessary. 

LEMMA 1. If i > 0, C < 2, s > 0, then 

s wndw Sn+l 

Jo (w + i)n+C (n + 1)i(s + i)fn+C- 

Use the substitution 1 + i/w = l/y, for which iyj/w = 1- y. The integral is 

fSyn+cw2-cdw/w2 = 1 S/(S+i) n+2(W/Y)2-c a/ly2 

= l fS/(s)( 1 )2 d 

= 1 { ~S jn+ 1 
2 
2- c 

(n + I)i(s + i) ( 1-s/is+ i) 
_ 2 -c Jsl(s +i)( )3-c ld 

by integration by parts. The result of the lemma follows. 
An ineffective version of the bounds for 4(n)(s) and ]fn)(S) contained in the next 

lemma would follow easily using Cauchy's inequalities for the derivatives of an 

analytic function. Observe also that when n > e - 1 Lemma 2 shows 

+1(n)(S) ___ 
ff 

n)(S)oasio 

by the ratio test. 

LEMMA 2. If yi(s) is either 4'i(s) or fi(s), then 

o I? n 
1)n~)(S)? n! 

i! (n + 1)'(s + .)+ 

for i > 0. 

We obtain, from (1.1), (2.3), and (2.2), 
00 

06 (-)I)nn)(s) xne-sx dx = n =/ln+ 
I 

1)nxpEn)(S) 

so that the result holds when i = 0. For the cases i > 1 we proceed by induction on 
i. From (2.7), (2.9) we have in either case 

+ly-(n) ( f) Wny(n)(W + 1 ) dw. 
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The left inequality of the lemma follows at once. For the other the inductive 
hypothesis yields 

(- - 1)! (n + l)'J (W + i)n-i+2 

so that the induction proceeds because of Lemma 1. This proves Lemma 2. 
Our computation of 44i(n)(s) is based on following the recurrences (2.8). It is clear 

that the following theorem provides an algorithm for the computation of pi(n)(S) to 
any prescribed degree of accuracy. 

THEOREM 1. Fix an integer N > 1. Define Yin (s) for n = N - 1, N - 2, . . ., 0 in 
turn by the relations 

(n + 1) Yin(S) = Yi-1,n(S + 1) S Yi,n+(S) (i > 1), 

YO,n(s) = (-_)nn!/sIn+; Yi,N(S) = 0 (i 1). 

Then,for eachi > 0, n > 0,s > 0, we have 

___ 4()14(n)(S) as N -->oo 

This last relation holds in the effective form (3.3). 

For convenience, renormalize from 4i(n)(S) to zin(S), where 

(-1)ni4(n)(s) - 1 n! (s+ i) Z I 
i! (n + 1'(s + i)~ n1ins) 

with a similar relation connecting Y with Z. Then Lemma 2 shows 

(3.1) 0 < Zi,n(s) < 1. 

The recurrence (2.8) gives 

Zi,n(s) =(n+ Zi,n+ (S) + Zi-l,n(s + 1). n +2) s + i s + i11" 

We may remark that this or a similar renormalization is desirable in an implemen- 
tation of the algorithm, to avoid explicit handling of numbers of the inconvenient 
size of 41(n)(S). 

Write z = Z + S. Then 

(i,n(S) = + Si! + 1(S) + Si- 1,n(S + I); 
(3.2)n 2 S iS+i 

80,n(S) 0; 6i,N(S) Zi,N(s) (i > 1). 

We will establish by induction that 

Sn+ / +i- N-n 

(3.) 0< i,n(S) N+1( 
+ + ) (0 

< n < N, i > 0). 

When n = N or when i = 0 this follows using (3.1). When n < N and i > 0 we 
may assume (3.3) holds already with n replaced by n + 1, and also with i replaced 



DIFFERENTIAL-DIFFERENCE EQUATIONS OF ADVANCED TYPE 241 

by i - 1. We then obtain from (3.2) 

) (n + 2) s +iN + I( s + i )N-n-I 

n ) s + i N + I( s + i i- n+1 s+ i (Nn+ 

sn + n+N +I i-i 

N+ I ( + i S + i- ) n+2 { s + i 

n 1 s + i- 1 \N-n 

N +1 s + i 

as required, because 

s i-1 
+ = 1 

This proves (3.3), and the assertion of the theorem follows. 

4. Computation of f(n)(S). Our algorithm for computing these numbers is based 
upon expressing f(n)(5 - 1) as a Taylor series in the numbers f(n)(5), and then 
truncating the system of linear equations in these numbers that results from Eq. 
(2.5) and its derivatives. An almost equivalent procedure would be based similarly 
on the integrated form (2.6). 

The next lemma relates to the system of linear equations that arises in this way. 

LEMMA 3. Suppose Xn > 1, and let A be the N by N upper triangular matrix 

, -1/1! +-1/2! . . .(N- I 

A 0 02 . . . (-)N-2/(N-2)! 

A = ? ? 3 * -)NI31 (N -3)!. 

O 0 . . .N 

Then the elements of the inverse matrix A - = (aiiJ) satisfy 

laii+m1 < (1/log 2)m (m > 0). 

For brevity write 1/log 2 = M. Consider first the system of equations Ax =b, 
where x is the column vector {xl, . . ., XN) and b = {0, . .. , 0, 1). Then IXNI s 1. 
An induction shows XN-n 

< Mn, since, for the inductive step, we obtain 

Mn-' M n-2 
IXN-n< 1! + 2! + = Mn{el/M - 1) = 

Mn. 

Now consider the jth column, rows i to j, of the matrix product AA - . We see 
that 

xI = a ij, X2 = ai+Ij, . . . , xj_j+ I = aj9j 

satisfy a system of linear equations of the type just considered. The result of the 
lemma follows. 
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We can now describe the algorithm for computing the numbers f(n)(l); we 
confine our attention to the simplest point 1 that was of importance in [5]. The 
function f1 satisfying (2.5) is analytic in Re(s) > -I - 1. Differentiate n times and 
then set s = 0. This gives, when I > 1, 

c0 

ffn(l)+ n +1)E (-lYjfn+j)(l)1j!=4,in),(l). 
j-o 

For n < N rewrite these as 

n + 2l n I + E (-lfyfn+j)(j)/j! = -44n)_(1)7 (n + 1)- 6N 

fl + 1 L<j<N-n 

where 

(4.1) n,N, I = E ( nj)( )/j!. 
j>N-n 

THEOREM 2. Fix integers I > 1, N > 1. Let Fn denote the solution (obtainable by 
back-substitution) of the triangular system of linear equations 

n + 2F + l -IYFn+j! l/(n + 1). 
I<'j<N-n 

Then,foreachn > 0, 

Fn AJn)( 1) __ aS I CC. 

This relation holds in the effective form (4.2). 

Note that the following proof does not in any way suggest that the corresponding 
property holds as N x . 

The quantities En = Fn -If(l) satisfy 
n + 2E 
n + l En + i (-IYEn +j = 

pn,N,I (O n < N). 

The matrix of this system is of the type considered in Lemma 3. Therefore 

nEnj < E Mm6n+mNI < Mn M'IN, 
O<m<N-n t<N 

where we write M = 1/log 2, as before. 
In (4.1) we use the estimate provided by Lemma 2. This gives 

IEI < 1 (I+ 1)'' M'(t +1)! 
nl Mn I! :<N j! (t + j1 + )'(I + 

j >N-t 

Writing t = N + 1 - u, t +j = N + v, we obtain 

(I + 
1)-' MN-n+l N! (N + v)! E 

_v! n I! (N+2)'vi (I + I)N+V N!v! (u+ v- U 

The inner sum over u does not exceed 

E u = - + el/M , 
> u !MI 
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since M = 1/log 2. Therefore the sum over v does not exceed 

N! I1 1 A-(N+1) N! (I + 1) 
(I + I)N - + I iN+I 

Consequently 

(4.2) E 
IN 

M l!(N + I)I( I )N+ 

The qualitative assertion of the theorem now follows by the ratio test, since 
N + 2 > 3 > e. 

We may also observe from (4.2) that the choice N = I, although not necessarily 
the best, is a good one, since in that case 

(4.3) JEnl n 

which is very good for large I. 

5. Numerical Considerations. The proof of Theorem I also shows that the 
algorithm it describes does not involve undesirable propagation of machine- 
induced rounding errors. This is because the algorithm consists of following the 
recurrences (2.8) for n < N, in the stable direction of decreasing n, where for i > I 
the quantity {i(N)(s) has been replaced by the incorrect value 0. The method of 
proof shows that if the renormalized quantities ziN(s) are affected by any errors 

Ai,N(S) satisfying Ai,N(s)l < I then the resulting error in Zim(S) is bounded by the 
expression on the right of (3.3). In view of (3.1) and the linearity of the recurrences 
(2.8) this shows that errors in zi m(S) of relative (and hence absolute) magnitude not 
exceeding E, say, induce (in the first place) smaller errors in zim m-(s) and (eventu- 
ally) errors in zin(S) which, even after summation over m, do not exceed 

1m-n 
mi~ (1 - ( S. )+ n i = Ei(s + i), 

and this only on pessimistic assumptions about the way in which separate 
machine-induced errors might combine. 

We can also show that serious loss of significant digits due to cancellation does 
not occur in the algorithm described by Theorem 2, provided we do not choose N 
too large in relation to I. For the quantity Fn is expressible as 

F= an,n+m 4n4+m)(I)/ (n + m), 
n+m <N 

with lan,n+ml < Mm (M = I/log 2) as in Lemma 3. If each term in this sum were 
evaluated with a relative error not exceeding E, then use of Lemma 2 guarantees 
that the absolute error in the result would not exceed 

e II E (n+m)! (M)n+m 
Mn I! m<N-n (n + m+ + 

For maximum control of this expression we might specify N S I/M, to ensure that 
the terms in the sum decrease as m increases. 
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Similar considerations indicate that, having computed 41 via Theorem 1 and f via 
Theorem 2, loss of significance does not occur in obtaining J(')(1) via (2.3). For the 
estimate in Lemma 2 for 4(n)(1) does not exceed 

n (i + I)i+' I n!e' 
(i + I)! (n + 1)'(i + )+ (n + 1)'(i + 1)n 

which for n > 2 decreases rapidly with increasing i. This estimate is not very 
helpful when n = 0 or 1, but the numerical evidence indicates that 4(n)(1) decreases 
with i for each n. 

A numerical experiment, of performing all computations to a restricted accuracy, 
indicates that this method of computing J(n)(l) gives answers accurate to within a 
few units of the last significant digit retained by the machine employed. 

We may measure the speed of convergence of the algorithm by asking that the 
estimate (4.2) of the truncation errors should not exceed E, and then counting how 
many times the recurrence relation in Theorem I is employed, since this is where 
the bulk of the work lies. Choosing N = N2 = I in Theorem 2 for simplicity, we 
require 

(5.1) ( 41) 

We must also compute 4(n)(1) for i < I, n < N, to the same relative accuracy E, say. 
For each i this is accomplished by one application of Theorem 1, where because of 
(3.1) and (3.3) we may demand 

This says (NI - N2)10g(1 + 1/ i) < log(i/E), so that 

(5.2) N1 > N2 + i log(i/E) 

is sufficient. This would involve iN, references to the recurrence in Theorem 1. 
Consequently the amount of work involved is asymptotic (asE -E 0) to 

Ei2 log( 1/E) 
J 
I3 log(l1/,E). 

ill 

Since I > log(l/E) is then sufficient to secure (5.1), for small E, the work needed is 
at most 0 {log4(I/E)). In this respect our algorithm compares very favorably with, 
say, popular algorithms for one-dimensional numerical quadrature. 

To obtain the data in Tables I and 2, we computed 4i(n)(l) for 0 < n < 10, 
I < i < 15 by the algorithm of Theorem 1, with N = N1 chosen in accordance 
with (5.2). Then we computed fn)(l) via Theorem 2 for I < I < 15, where we took 
N = N2 = I. In (5.2) we chose E = 2-128; the ICL 2980 computer used was 
instructed to allocate 128 bits per machine real number. The numbers J(n)(l) were 
then obtained from (2.3). With this choice of parameters the error bound (4.3) only 
guarantees an accuracy of ? 10- 17 in Table 1, but the observed rate of convergence 
of the approximations as I increases (illustrated in Table 2) indicates that the 
tabulated results are accurate to the number of figures quoted. 



DIFFERENTIAL-DIFFERENCE EQUATIONS OF ADVANCED TYPE 245 

TABLE I 

n ~~~~(_ I)nj(n)( I)ln! 

0 0.62432 99885 43550 87099 29363 
1 0.85339 15293 19285 1280027471 
2 0.94089 20196 73567 88710 87327 
3 0.97550 64320 84803 55331 50307 
4 0.98961 44672 15373 33871 31122 
5 0.99551 13408 16560 05246 64809 
6 0.99802 87948 08481 63081 30048 
7 0.99912 27235 35016 63344 84403 
8 0.99960 51772 98586 46680 17361 
9 0.99982 06201 34542 83073 49949 

10 0.99991 78444 06540 14863 64825 

It is not suggesed that one would in fact allocate numerical storage to the 
numbers J(n)(1) for large n, since (2.3) and Lemma 2 show 

(-l)nj(n)(J)/n!-- 1 asn-xoo. 
In fact, in the application in [5] the numbers worthy of storage were 44n)(1) and 

3f(n)( 1). 

To illustrate the empirically observed rate of convergence of the algorithm of 
Theorem 2, Table 2 shows the successive approximations J, to the number J(1), 
obtained in the manner described for I < I < 15. In scanning this table, it should 
be borne in mind that (working to a fixed precision throughout) the work involved 
in calculating the Ith approximation is asymptotic to J2. 

TABLE 2 

I J, 

1 0.6 ... 
2 0.624 ... 
3 0.62432 ... 
4 0.62432 9... 
5 0.62432 998 ... 

6 0.62432 99885 ... 
7 0.62432 99885 43 ... 

8 0.62432 99885 4355... 
9 0.62432 99885 43550 8... 

10 0.62432 99885 43550 870 ... 
11 0.62432 99885 43550 87099... 
12 0.62432 99885 43550 87099 293... 
13 0.62432 99885 43550 87009 29363 ... 

14 0.62432 99885 43550 87099 29363... 
15 0.62432 99885 43550 87099 29363 ... 

The calculations described in these tables occupied about 20 seconds of machine 
time. 
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6. Coda. Let g(n) denote the largest prime factor of n. Dickman [4] gave a 
heuristic treatment of the fact and de Bruijn [3] proved that 

lim {E logg(n) E logn} = A, 

where 

(6.1) A =f P(x) dx 
(I+ x) 2 

and Dickman's function p, continuous in (0, ox), satisfies 

p(x) = I (O <xA <) 
(6.2) xp'(x) = -p(x -1) (x > 1), 

p(x) = O(ex) (x > 1). 

Dickman obtained a numerical approximation to A directly from (6.1), using 
successive numerical integrations of (6.2) to obtain approximations to p over 
successive intervals (n, n + 1). 

We can show that A = J(1), where J(l) is as in (1.1). Introduce the Laplace 
transform of p': 

r(s) = f p (x)e-sx dx. 

In the first place we obtain, using (6.2), 

(6.3) A X2 P(X2 dx = - x dx = r(s) ds. 

On the other hand we have 

p'(x)=O (O<x<l), 
-xp"(x) = p'(x) + p'(x - 1) (x> 1), 

and p' is continuous in (1, oo), with p'(1 + ) = - 1. Hence 

ds {e + sr(s)} =dsf p(x)esxdx 

00 
= fl { p'(x) + p'(x - 1)}e-sx dx = (I + e-s)r(s), 

so that 

sr'(s) - esr(s) - es = 0. 
This gives 

r(s)=exp{ f t dt}-l1 

because r(s) 0 as s - oo. Hence, and by integrations by parts from (6.3), 

A xf j- exp{f e dt} - Ildx =J(l), 
Jo dx [ x t ) ] 

the constant defined in (1.1). 
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